Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Planta ; 259(4): 80, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436711

RESUMO

MAIN CONCLUSION: This review has explored the importance of using a synergistic approach of nano-elicitation and hydroponics to improve plant growth and metabolite production. Furthermore, it emphasizes the significance of green nanotechnology and eco-friendly practices while utilizing this approach to promote the development of a sustainable agriculture system. Nano-elicitation stimulates metabolic processes in plants using nanoparticles (NPs) as elicitors. The stimulation of these biochemical processes can enhance plant yield and productivity, along with the production of secondary metabolites. Nanoparticles have garnered the attention of scientific community because of their unique characteristics, such as incredibly small size and large surface-to-volume ratio, which make them effective elicitors. Hydroponic systems, which optimize growing conditions to increase plant production, are typically used to study the effect of elicitors. By integrating these two approaches, the qualitative and quantitative output of plants can be increased while employing minimal resources. As the global demand for high-quality crops and bioactive compounds surges, embracing this synergistic approach alongside sustainable farming practices can pave the way for resilient agricultural systems, ensuring food security and fostering an eco-friendly environment.


Assuntos
Agricultura , Produtos Agrícolas , Metabolismo Secundário , Hidroponia , Fazendas
2.
Int J Biol Macromol ; 253(Pt 1): 126659, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37660856

RESUMO

Mucopermeating nanoformulations can enhance mucosal penetration of poorly soluble drugs at their target site. In this work, thiolated chitosan (TCS)-lithocholic acid (LA) nanomicelles loaded with ß-carotene, a safe phytochemical with anticancer properties, were designed to improve the pharmaceutical and pharmacological drug profile. The TCS-LA nanomicelles were characterized by FTIR to confirm the presence of the thiol group that favors skin adhesion, and to corroborate the conjugation of hydrophobic LA with hydrophilic CS to form an amphiphilic polymer derivative. Their crystalline nature and thermal behavior were investigated by XRD and DSC analyses, respectively. According to DLS and TEM, their average size was <300 nm, and their surface charge was +27.0 mV. ß-carotene entrapment and loading efficiencies were 64 % and 58 %, respectively. In vitro mucoadhesion and ex vivo mucopenetration analyses further corroborated the potential of the nanoformulation to deliver the drug in a sustained manner under conditions mimicking cancer micro-environment. Anticancer studies in mice demonstrated that the loaded nanomicelles delayed skin cancer growth, as revealed by both morphological and biochemical parameters. Based on the results obtained herein, it can be concluded that drug-loaded TCS-LA is a novel, stable, effective and safe mucoadhesive formulation of ß-carotene for the potential treatment of skin cancer.


Assuntos
Quitosana , Nanopartículas , Neoplasias Cutâneas , Camundongos , Animais , Quitosana/química , beta Caroteno , Polímeros , Mucosa , Neoplasias Cutâneas/tratamento farmacológico , Nanopartículas/química , Microambiente Tumoral
3.
Int J Biol Macromol ; 247: 125821, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37467830

RESUMO

Diabetes mellitus causes a wide range of metabolic derangements with multiple organ damage. The microvascular and macrovascular complications of diabetes result partly from the damage to the glycosaminoglycans (GAG) in the basement membrane. GAGs are negatively charged polysaccharides with repeating disaccharide units. They play a significant role in cellular proliferation and signal transduction. Destruction of extracellular matrix results in diseases in various organs including myocardial fibrosis, retinal damage and nephropathy. To substitute the natural GAGs pharmacotherapeutically, they have been synthesized by using basic disaccharide units. Among the four classes of GAGs, heparin is the most widely studied. Recent studies have revealed multiple significant GAG-protein interactions suggesting their use for the management of diabetic complications. Moreover, they can act as biomarkers for assessing the disease progression. A number of GAG-based therapeutic agents are being evaluated for managing diabetic complications. The current review provides an outline of the role of GAGs in diabetes while covering their interaction with different molecular players that can serve as targets for the diagnosis, management and prevention of diabetes and its complications. The medicinal chemistry and clinical pharmacotherapeutics aspects have are covered to aid in the establishment of GAG-based therapies as a possible avenue for diabetes.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Humanos , Glicosaminoglicanos/química , Diabetes Mellitus/tratamento farmacológico , Complicações do Diabetes/tratamento farmacológico , Heparina , Dissacarídeos/química , Heparitina Sulfato/metabolismo
4.
Front Pharmacol ; 13: 1048691, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467041

RESUMO

The length of the telomeres is maintained with the help of the enzyme telomerase constituting of two components, namely, a core reverse transcriptase protein (hTERT) and RNA (hTR). It serves as a significant and universal cancer target. In silico approaches play a crucial role in accelerating drug development processes, especially cancer drug repurposing is an attractive approach. The current study is aimed at the repurposing of FDA-approved drugs for their potential role as hTERT inhibitors. Accordingly, a library of 2,915 sets of FDA-approved drugs was generated from the ZINC database in order to screen for novel hTERT inhibitors; later on, these were subjected to molecular docking analysis. The top two hits, ZINC03784182 and ZINC01530694, were shortlisted for molecular dynamic simulation studies at 100 ns based on their binding scores. The RMSD, RMSF, Rg, SASA, and interaction energies were calculated for a 100-ns simulation period. The hit compounds were also analyzed for antitumor activity, and the results revealed promising cytotoxic activities of these compounds. The study has revealed the potential application of these drugs as antitumor agents that can be useful in treating cancer and can serve as lead compounds for further in vivo, in vitro, and clinical studies.

5.
Front Pharmacol ; 13: 1017549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249754

RESUMO

Purpose: Alternate formulation strategies need to be devised for improving the absorption and bioavailability of drug molecules administered through the intravaginal route. Enhancing the coating of vaginal mucosa can aid the achievement of this goal. The aim of the current study is to develop a mucoadhesive formulation having adequate adhesiveness, spreading, and viscosity profiles that can ensure good tissue absorption of adapalene upon intravaginal application. Method: A combination of mucoadhesive agents has been employed, including Carbopol-934, HPMC K-15M, and xanthan gum, in varying ratios to formulate five different gels. Furthermore, a cost-effective UV-spectroscopic analytical method was developed to quantify the amount of adapalene in tested samples, both of in vitro and in vivo origin. The analytical method was validated for different parameters, including specificity, linearity, range, accuracy, precision, and ruggedness. The modified USP-II apparatus was used for dissolution studies, while in vivo pharmacokinetic validation was performed in a murine model. Result: Of all the tested formulations, on the basis of the rheo-mechanical attributes, ACX3 performed better than the rest, including the commercially available intravaginal reference product. ACX3 had an average adhesion time of 12 min and a spread diameter of 37 mm. It showed 35 mm as average distance travelled by the diluted sample for leakage assessment. The analytical method developed for the adapalene muco-adhesive gel was within the range for all the validation parameters. For further evaluating the performance of the formulation, dissolution studies were conducted in simulated vaginal conditions which showed 94.83% of drug release within 5 minutes, while on completion of 30 min, it was measured to be 92.90%. Moreover, approximately 67% of the administered drug was recovered after 5 min of administration as evaluated through tissue recovery procedures in mice. Conclusion: The study aided in development of a formulation which can enhance the muco-adhesion of the drug molecule, resulting in an improved pharmacokinetic profile. Moreover, it established an efficient assay method which can be employed for in vitro and in vivo quantification of adapalene in simulated and physiological fluids.

6.
J Biomol Struct Dyn ; 40(16): 7612-7628, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33663347

RESUMO

Medicinal plants have served as an important source for addressing the ailments of humans and animals alike. The emergence of advanced technologies in the field of drug discovery and development has helped in isolating various bioactive phytochemicals and developing them as drugs. Owing to their significant pharmacological benefits and minimum adverse effects, they not only serve as good candidates for therapeutics themselves but also help in the identification and development of related drug like molecules against various metabolic and infectious diseases. The ever-increasing diversity, severity and incidence of infectious diseases has resulted in an exaggerated mortality and morbidity levels. Geno-proteomic mutations in microbes, irrational prescribing of antibiotics, antimicrobial resistance and human population explosion, all call for continuous efforts to discover and develop alternated therapeutic options against the microbes. This review article describes the pharmacoinformatics tools and methods which are currently used in the discovery of bioactive phytochemicals, thus making the process more efficient and effective. The pharmacological aspects of the drug discovery and development process have also been reviewed with reference to the in silico activities. Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Plantas Medicinais , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Descoberta de Drogas , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
7.
Can J Microbiol ; 67(11): 799-812, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34237220

RESUMO

Haemophilus influenzae colonizes the respiratory tract and is associated with life-threatening invasive infections. The recent rise in its global prevalence, even in the presence of multiple vaccines, indicates an urgent need to develop effective cross-strain vaccine strategies. Our work focused on identifying the universally conserved antigenic regions of H. influenzae that can be used to develop new vaccines. A variety of bioinformatics tools were applied for the comprehensive geno-proteomic analysis of H. influenzae type a strain, as reference serotype, through which subcellular localization, essentiality, virulence, and non-host homology were determined. B and T cell epitope mapping of the 3D protein structures were performed. Thereafter, molecular docking with HLA_DRB1*0101 and comparative genome analysis established the candidature of the identified regions. Based on the established vaccinomics criteria, five target proteins were predicted as novel vaccine candidates. Among these, nine epitopic regions that could regulate lymphocyte activity through strong protein-protein interactions were identified. Comparative genomic analysis revealed that the identified regions were highly conserved among the different strains of H. influenzae. Based on multiple immunogenic factors, five prioritized proteins and their predicted epitopes were identified as ideal common putative vaccine candidates against typeable strains.


Assuntos
Haemophilus influenzae , Vacinas , Epitopos de Linfócito T/genética , Haemophilus influenzae/genética , Simulação de Acoplamento Molecular , Proteoma
8.
PeerJ ; 9: e11409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055482

RESUMO

The CRISPR-Cas9 system has recently evolved as a powerful mutagenic tool for targeted genome editing. The impeccable functioning of the system depends on the optimal design of single guide RNAs (sgRNAs) that mainly involves sgRNA specificity and on-target cleavage efficacy. Several research groups have designed algorithms and models, trained on mammalian genomes, for predicting sgRNAs cleavage efficacy. These models are also implemented in most plant sgRNA design tools due to the lack of on-target cleavage efficacy studies in plants. However, one of the major drawbacks is that almost all of these models are biased for considering only coding regions of the DNA while excluding ineffective regions, which are of immense importance in functional genomics studies especially for plants, thus making prediction less reliable. In the present study, we evaluate the on-target cleavage efficacy of experimentally validated sgRNAs designed against diverse ineffective regions of Arabidopsis thaliana genome using various statistical tests. We show that nucleotide preference in protospacer adjacent motif (PAM) proximal region, GC content in the PAM proximal seed region, intact RAR and 3rd stem loop structures, and free accessibility of nucleotides in seed and tracrRNA regions of sgRNAs are important determinants associated with their high on-target cleavage efficacy. Thus, our study describes the features important for plant sgRNAs high on-target cleavage efficacy against ineffective genomic regions previously shown to give rise to ineffective sgRNAs. Moreover, it suggests the need of developing an elaborative plant-specific sgRNA design model considering the entire genomic landscape including ineffective regions for enabling highly efficient genome editing without wasting time and experimental resources.

9.
J Biol Res (Thessalon) ; 28(1): 5, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593445

RESUMO

BACKGROUND: Because of the highly heterogeneous nature of breast cancer, each subtype differs in response to several treatment regimens. This has limited the therapeutic options for metastatic breast cancer disease requiring exploration of diverse therapeutic models to target tumor specific biomarkers. METHODS: Differentially expressed breast cancer genes identified through extensive data mapping were studied for their interaction with other target proteins involved in breast cancer progression. The molecular mechanisms by which these signature genes are involved in breast cancer metastasis were also studied through pathway analysis. The potential drug targets for these genes were also identified. RESULTS: From 50 DEGs, 20 genes were identified based on fold change and p-value and the data curation of these genes helped in shortlisting 8 potential gene signatures that can be used as potential candidates for breast cancer. Their network and pathway analysis clarified the role of these genes in breast cancer and their interaction with other signaling pathways involved in the progression of disease metastasis. The miRNA targets identified through miRDB predictor provided potential miRNA targets for these genes that can be involved in breast cancer progression. Several FDA approved drug targets were identified for the signature genes easing the therapeutic options for breast cancer treatment. CONCLUSION: The study provides a more clarified role of signature genes, their interaction with other genes as well as signaling pathways. The miRNA prediction and the potential drugs identified will aid in assessing the role of these targets in breast cancer.

10.
Front Genet ; 11: 609668, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381153

RESUMO

In plants, F-box proteins (FBPs) constitute one of the largest superfamilies of regulatory proteins. Most F-box proteins are shown to be an integral part of SCF complexes, which carry out the degradation of proteins and regulate diverse important biological processes. Anthers and pollen development have a huge importance in crop breeding. Despite the vast diversity of FBPs in Arabidopsis male reproductive organs, their role in anther and pollen development is not much explored. Moreover, a standard nomenclature for naming FBPs is also lacking. Here, we propose a standard nomenclature for naming the FBPs of Arabidopsis thaliana uniformly and carry out a systematic analysis of sperm cell-specific FBP gene, i.e., 3p.AtFBP113 due to its reported high and preferential expression, for detailed functional annotation. The results revealed that 3p.AtFBP113 is located on the small arm of chromosome and encodes 397 amino acid long soluble, stable, and hydrophilic protein with the possibility of localization in various cellular compartments. The presence of the C-terminal F-box associated domain (FBA) with immunoglobulin-like fold anticipated its role in protein binding. Gene ontology based functional annotation and tissue-specific gene co-expression analysis further strengthened its role in protein binding and ubiquitination. Moreover, various potential post/co-translational modifications were anticipated and the predicted tertiary structure also showed the presence of characteristic domains and fold. Thus, the outcomes of the study will be useful in developing a better understating of the function of 3p.AtFBP113 during the process of pollen development, which will be helpful for targeting the gene for manipulation of male fertility that has immense importance in hybrid breeding.

11.
Drug Des Devel Ther ; 12: 2915-2921, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254421

RESUMO

BACKGROUND: Lyme disease accounts for >90% of all vector-borne disease cases in the United States and affect ~300,000 persons annually in North America. Though traditional tetracycline antibiotic therapy is generally prescribed for Lyme disease, still 10%-20% of patients treated with current antibiotic therapy still show lingering symptoms. METHODS: In order to identify new drugs, we have evaluated four cephalosporins as a therapeutic alternative to commonly used antibiotics for the treatment of Lyme disease by using microdilution techniques like minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). We have determined the MIC and MBC of four drugs for three Borrelia burgdorferi s.s strains namely CA8, JLB31 and NP40. The binding studies were performed using in silico analysis. RESULTS: The MIC order of the four drugs tested is cefoxitin (1.25 µM/mL) > cefamandole (2.5 µM/mL), > cefuroxime (5 µM/mL) > cefapirin (10 µM/mL). Among the drugs that are tested in this study using in vivo C3H/HeN mouse model, cefoxitin effectively kills B. burgdorferi. The in silico analysis revealed that all four cephalosporins studied binds effectively to B. burgdorferi proteins, SecA subunit penicillin-binding protein (PBP) and Outer surface protein E (OspE). CONCLUSION: Based on the data obtained, cefoxitin has shown high efficacy killing B. burgdorferi at concentration of 1.25 µM/mL. In addition to it, cefoxitin cleared B. burgdorferi infection in C3H/HeN mice model at 20 mg/kg.


Assuntos
Cefalosporinas/uso terapêutico , Doença de Lyme/tratamento farmacológico , Animais , Simulação por Computador , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C3H , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
13.
Asian Pac J Trop Med ; 9(9): 844-850, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27633296

RESUMO

OBJECTIVE: To predict immunogenic promiscuous T cell epitopes from the polyprotein of the Zika virus using a range of bioinformatics tools. To date, no epitope data are available for the Zika virus in the IEDB database. METHODS: We retrieved nearly 54 full length polyprotein sequences of the Zika virus from the NCBI database belonging to different outbreaks. A consensus sequence was then used to predict the promiscuous T cell epitopes that bind MHC 1 and MHC II alleles using PorPred1 and ProPred immunoinformatic algorithms respectively. The antigenicity predicted score was also calculated for each predicted epitope using the VaxiJen 2.0 tool. RESULTS: By using ProPred1, 23 antigenic epitopes for HLA class I and 48 antigenic epitopes for HLA class II were predicted from the consensus polyprotein sequence of Zika virus. The greatest number of MHC class I binding epitopes were projected within the NS5 (21%), followed by Envelope (17%). For MHC class II, greatest number of predicted epitopes were in NS5 (19%) followed by the Envelope, NS1 and NS2 (17% each). A variety of epitopes with good binding affinity, promiscuity and antigenicity were predicted for both the HLA classes. CONCLUSION: The predicted conserved promiscuous T-cell epitopes examined in this study were reported for the first time and will contribute to the imminent design of Zika virus vaccine candidates, which will be able to induce a broad range of immune responses in a heterogeneous HLA population. However, our results can be verified and employed in future efficacious vaccine formulations only after successful experimental studies.

14.
Drug Des Devel Ther ; 10: 1307-22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27103785

RESUMO

Lyme disease is the most common zoonotic bacterial disease in North America. It is estimated that >300,000 cases per annum are reported in USA alone. A total of 10%-20% of patients who have been treated with antibiotic therapy report the recrudescence of symptoms, such as muscle and joint pain, psychosocial and cognitive difficulties, and generalized fatigue. This condition is referred to as posttreatment Lyme disease syndrome. While there is no evidence for the presence of viable infectious organisms in individuals with posttreatment Lyme disease syndrome, some researchers found surviving Borrelia burgdorferi population in rodents and primates even after antibiotic treatment. Although such observations need more ratification, there is unmet need for developing the therapeutic agents that focus on removing the persisting bacterial form of B. burgdorferi in rodent and nonhuman primates. For this purpose, high-throughput screening was done using BacTiter-Glo assay for four compound libraries to identify candidates that stop the growth of B. burgdorferi in vitro. The four chemical libraries containing 4,366 compounds (80% Food and Drug Administration [FDA] approved) that were screened are Library of Pharmacologically Active Compounds (LOPAC1280), the National Institutes of Health Clinical Collection, the Microsource Spectrum, and the Biomol FDA. We subsequently identified 150 unique compounds, which inhibited >90% of B. burgdorferi growth at a concentration of <25 µM. These 150 unique compounds comprise many safe antibiotics, chemical compounds, and also small molecules from plant sources. Of the 150 unique compounds, 101 compounds are FDA approved. We selected the top 20 FDA-approved molecules based on safety and potency and studied their minimum inhibitory concentration and minimum bactericidal concentration. The promising safe FDA-approved candidates that show low minimum inhibitory concentration and minimum bactericidal concentration values can be chosen as lead molecules for further advanced studies.


Assuntos
Antibacterianos/farmacologia , Borrelia burgdorferi/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas/farmacologia , Antibacterianos/química , Borrelia burgdorferi/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Humanos , Doença de Lyme/tratamento farmacológico , Testes de Sensibilidade Microbiana , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
15.
Brain Res Bull ; 122: 19-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26912408

RESUMO

Aluminum (Al) is a neurotoxic agent which readily crosses the blood-brain-barrier (BBB) and accumulates in the brain leading to neurodegenerative disorders, characterised by cognitive impairment. Alpha-lipoic acid (ALA) is an antioxidant and has a potential to improve cognitive functions. This study aimed to evaluate the neuroprotective effect of ALA in AlCl3-induced neurotoxicity mouse model. Effect of ALA (25mg/kg/day) was evaluated in the AlCl3-induced neurotoxicity (AlCl3 150 mg/kg/day) mouse model on learning and memory using behaviour tests and on the expression of muscarinic receptor genes (using RT-PCR), in hippocampus and amygdala. Following ALA treatment, the expression of muscarinic receptor genes M1, M2 and choline acetyltransferase (ChaT) were significantly improved (p<0.05) relative to AlCl3-treated group. ALA enhanced fear memory (p<0.01) and social novelty preference (p<0.001) comparative to the AlCl3-treated group. Fear extinction memory was remarkably restored (p<0.001) in ALA-treated group demonstrated by reduced freezing response as compared to the AlCl3-treated group which showed higher freezing. In-silico analysis showed that racemic mixture of ALA has higher binding affinity for M1 and M2 compared to acetylcholine. These novel findings highlight the potential role of ALA in cognitive functions and cholinergic system enhancement thus presenting it an enviable therapeutic candidate for the treatment of neurodegenerative disorders.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M2/metabolismo , Ácido Tióctico/farmacologia , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Cloreto de Alumínio , Compostos de Alumínio/toxicidade , Tonsila do Cerebelo/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Cloretos/toxicidade , Colina O-Acetiltransferase/metabolismo , Cognição/efeitos dos fármacos , Medo/efeitos dos fármacos , Hipocampo/metabolismo , Aprendizagem/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Ácido Tióctico/metabolismo
16.
Infect Genet Evol ; 34: 200-10, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26140959

RESUMO

The high mutation rate in influenza virus genome and appearance of drug resistance calls for a constant effort to identify alternate drug targets and develop new antiviral strategies. The internal proteins of the virus can be exploited as a potential target for therapeutic interventions. Among these, the nucleoprotein (NP) is the most abundant protein that provides structural and functional support to the viral replication machinery. The current study aims at analysis of protein sequence polymorphism patterns, degree of molecular evolution and sequence conservation as a function of potential druggability of nucleoprotein. We analyzed a universal set of amino acid sequences, (n=22,000) and, in order to identify and correlate the functionally conserved, druggable regions across different parameters, classified them on the basis of host organism, strain type and continental region of sample isolation. The results indicated that around 95% of the sequence length was conserved, with at least 7 regions conserved across the protein among various classes. Moreover, the highly variable regions, though very limited in number, were found to be positively selected indicating, thereby, the high degree of protein stability against various hosts and spatio-temporal references. Furthermore, on mapping the conserved regions on the protein, 7 drug binding pockets in the functionally important regions of the protein were revealed. The results, therefore, collectively indicate that nucleoprotein is a highly conserved and stable viral protein that can potentially be exploited for development of broadly effective antiviral strategies.


Assuntos
Vírus da Influenza A/genética , Influenza Humana/virologia , Nucleoproteínas/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Antivirais/química , Sequência Conservada , Evolução Molecular , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Terapia de Alvo Molecular , Nucleoproteínas/química , Filogenia , Filogeografia , Proteínas Virais/química
17.
Bioorg Med Chem ; 23(17): 5870-80, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26204890

RESUMO

The purpose of the present study was to discover the extent of contribution to antityrosinase activity by adding hydroxy substituted benzoic acid, cinnamic acid and piperazine residues to vanillin. The study showed the transformation of vanillin into esters as shown in (4a-4d), (6a-6b), and (8a-8b). In addition, the relationship between structures of these esters and their mushroom tyrosinase inhibitory activity was explored. The kinetics of inhibition on mushroom tyrosinase by these esters was also investigated. It was found that hydroxyl substituted benzoic acid derivatives were weak inhibitors; however hydroxy or chloro substituted cinnamic acid and piperazine substituted derivatives were able to induce significant tyrosinase inhibition. The mushroom tyrosinase (PDBID 2ZWE) was docked with synthesized vanillin derivatives and their calculated binding energies were compared with experimental IC50 values which provided positive correlation. The most potent derivative 2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate (6a) possesses hydroxy substituted cinnamic acid scaffold having IC50 value 16.13 µM with binding energy of -7.2 kcal/mol. The tyrosinase inhibitory activity of (6a) is comparable with standard kojic acid. Kinetic analysis indicated that compound 6a was mixed-type tyrosinase inhibitor with inhibition constant values Ki (13 µM) and Ki' (53 µM) and formed reversible enzyme inhibitor complex. The active vanillin analog (6a) was devoid of toxic effects as shown in cytotoxic studies.


Assuntos
Agaricales/enzimologia , Benzaldeídos/química , Benzaldeídos/síntese química , Inibidores Enzimáticos/química
18.
Eur J Med Chem ; 98: 203-11, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26025140

RESUMO

The present studies reports the synthesis of hydoxylated thymol analogues (4a-e) and (6a-c) as mushroom tyrosinase inhibitors. The title compounds were obtained in good yield and characterized by FTIR, (1)H NMR, (13)C NMR, Mass spectral data and X-ray crystallography in case of compound (6a). The inhibitory effects on mushroom tyrosinase and DPPH were evaluated and it was observed that 2-[5-methyl-2-(propan-2-yl)phenoxy]-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate (6b) showed tyrosinase inhibitory activity (IC50 15.20 µM) comparable to kojic acid (IC50 16.69 µM) while 2-[5-methyl-2-(propan-2-yl)phenoxy]-2-oxoethyl 3,4-dihydroxybenzoate (4d) exhibited higher antioxidant potential (IC50 11.30 µM) than standard ascorbic acid (IC50 24.20 µM). The docking studies of synthesized thymol analogues was also performed against tyrosinase protein (PDBID 2ZMX) to compare the binding affinities with IC50 values. The predicted binding affinities are in good agreement with the IC50 values as compound (6b) showed highest binding affinity -7.1 kcal/mol. The kinetic mechanism analyzed by Lineweaver-Burk plots exhibited that compound (4d) and (6b) inhibit the enzyme by two different pathways displayed mixed-type inhibition. The inhibition constants Ki calculated from Dixon plots for compounds (4d) and (6b) are 34 µM and 25 µM respectively. It was also found from kinetic analysis that derivative (6b) formed reversible enzyme inhibitor complex. It is propose on the basis of our investigation that title compound (6b) may serve as lead structure for the design of more potent tyrosinase inhibitors.


Assuntos
Agaricales/enzimologia , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Timol/análogos & derivados , Simulação por Computador , Cristalografia por Raios X , Hidroxilação , Cinética , Simulação de Acoplamento Molecular , Timol/química , Timol/farmacologia
19.
J Enzyme Inhib Med Chem ; 30(6): 874-83, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25643758

RESUMO

A series of umbelliferone analogues were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that some of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. Especially, 2-oxo-2-[(2-oxo-2H-chromen-7-yl)oxy]ethyl-2,4-dihydroxybenzoate (4e) bearing 2,4-dihydroxy substituted phenyl ring exhibited the most potent tyrosinase inhibitory activity with IC50 value 8.96 µM and IC50 value of kojic acid is 16.69. The inhibition mechanism analyzed by Lineweaver-Burk plots revealed that the type of inhibition of compound 4e on tyrosinase was non-competitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compounds 4c and 4e showed the highest binding affinity with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compounds 4c and 4e may serve as a structural template for the design and development of novel tyrosinase inhibitors.


Assuntos
Agaricales/enzimologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Umbeliferonas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade , Umbeliferonas/síntese química , Umbeliferonas/química
20.
Antiviral Res ; 112: 120-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25446404

RESUMO

Influenza virus is one of the major causes of mortality and morbidity associated with respiratory diseases. The high rate of mutation in the viral proteome provides it with the ability to survive in a variety of host species. This property helps it in maintaining and developing its pathogenicity, transmission and drug resistance. Alternate drug targets, particularly the internal proteins, can potentially be exploited for addressing the resistance issues. In the current analysis, the degree of conservation of influenza virus polymerases has been studied as one of the essential elements for establishing its candidature as a potential target of antiviral therapy. We analyzed more than 130,000 nucleotide and amino acid sequences by classifying them on the basis of continental presence of host organisms. Computational analyses including genetic polymorphism study, mutation pattern determination, molecular evolution and geophylogenetic analysis were performed to establish the high degree of conservation among the sequences. These studies lead to establishing the polymerases, in particular PB1, as highly conserved proteins. Moreover, we mapped the conservation percentage on the tertiary structures of proteins to identify the conserved, druggable sites. The research study, hence, revealed that the influenza virus polymerases are highly conserved (95-99%) proteins with a very slow mutation rate. Potential drug binding sites on various polymerases have also been reported. A scheme for drug target candidate development that can be employed to rapidly mutating proteins has been presented. Moreover, the research output can help in designing new therapeutic molecules against the identified targets.


Assuntos
Sequência Conservada , Orthomyxoviridae/enzimologia , Filogeografia , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Biologia Computacional , Conformação Proteica , RNA Polimerase Dependente de RNA/química , Análise de Sequência de DNA , Análise de Sequência de Proteína , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA